Nuprl Lemma : sub-corec-family

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].
  corec-family(H) ⊆ corec-family(H) supposing type-family-continuous{i:l}(P;H)


Proof




Definitions occuring in Statement :  corec-family: corec-family(H) type-family-continuous: type-family-continuous{i:l}(P;H) sub-family: F ⊆ G uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: subtype_rel: A ⊆B all: x:A. B[x] sub-family: F ⊆ G so_apply: x[s] so_lambda: λ2x.t[x] corec-family: corec-family(H) type-family-continuous: type-family-continuous{i:l}(P;H) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q uiff: uiff(P;Q) isect-family: a:A. F[a] top: Top nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False sq_stable: SqStable(P) squash: T subtract: m le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  fun_exp_add1 istype-void decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add istype-int minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel istype-le fun_exp_wf top_wf subtype_rel_isect nat_wf sub-family_transitivity isect-family_wf type-family-continuous_wf
Rules used in proof :  equalitySymmetry equalityTransitivity because_Cache isect_memberEquality axiomEquality dependent_functionElimination independent_isectElimination sqequalRule universeEquality hypothesisEquality cumulativity functionEquality lemma_by_obid instantiate applyEquality lambdaEquality thin isectElimination hypothesis sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination isectEquality lambdaFormation extract_by_obid Error :isect_memberEquality_alt,  voidElimination Error :lambdaEquality_alt,  Error :dependent_set_memberEquality_alt,  addEquality setElimination rename natural_numberEquality unionElimination independent_pairFormation Error :lambdaFormation_alt,  independent_functionElimination imageMemberEquality baseClosed imageElimination minusEquality Error :isectIsType,  Error :inhabitedIsType,  Error :universeIsType,  closedConclusion

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    corec-family(H)  \msubseteq{}  H  corec-family(H)  supposing  type-family-continuous\{i:l\}(P;H)



Date html generated: 2019_06_20-PM-00_35_27
Last ObjectModification: 2018_11_20-PM-00_25_09

Theory : co-recursion


Home Index