Nuprl Lemma : sub-corec-family
∀[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].
  corec-family(H) ⊆ H corec-family(H) supposing type-family-continuous{i:l}(P;H)
Proof
Definitions occuring in Statement : 
corec-family: corec-family(H)
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
sub-family: F ⊆ G
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
sub-family: F ⊆ G
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
corec-family: corec-family(H)
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
isect-family: ⋂a:A. F[a]
, 
top: Top
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
fun_exp_add1, 
istype-void, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
istype-int, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
istype-le, 
fun_exp_wf, 
top_wf, 
subtype_rel_isect, 
nat_wf, 
sub-family_transitivity, 
isect-family_wf, 
type-family-continuous_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
universeEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
lemma_by_obid, 
instantiate, 
applyEquality, 
lambdaEquality, 
thin, 
isectElimination, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
isectEquality, 
lambdaFormation, 
extract_by_obid, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :lambdaEquality_alt, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
Error :isectIsType, 
Error :inhabitedIsType, 
Error :universeIsType, 
closedConclusion
Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    corec-family(H)  \msubseteq{}  H  corec-family(H)  supposing  type-family-continuous\{i:l\}(P;H)
Date html generated:
2019_06_20-PM-00_35_27
Last ObjectModification:
2018_11_20-PM-00_25_09
Theory : co-recursion
Home
Index