Nuprl Lemma : subtype_rel_isect

[A,T:Type]. ∀[B:T ⟶ Type].  uiff(A ⊆(⋂x:T. B[x]);∀[x:T]. (A ⊆B[x]))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B so_apply: x[s] prop: so_lambda: λ2x.t[x]
Lemmas referenced :  subtype_rel_wf uall_wf subtype_rel_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule axiomEquality hypothesis hypothesisEquality sqequalHypSubstitution isect_memberEquality isectElimination thin because_Cache lemma_by_obid isectEquality applyEquality lambdaEquality productElimination independent_pairEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality independent_isectElimination

Latex:
\mforall{}[A,T:Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].    uiff(A  \msubseteq{}r  (\mcap{}x:T.  B[x]);\mforall{}[x:T].  (A  \msubseteq{}r  B[x]))



Date html generated: 2016_05_13-PM-03_18_52
Last ObjectModification: 2015_12_26-AM-09_08_08

Theory : subtype_0


Home Index