Nuprl Lemma : sub-family_transitivity

[P:Type]. ∀[F,G,H:P ⟶ Type].  (F ⊆ H) supposing (F ⊆ and G ⊆ H)


Proof




Definitions occuring in Statement :  sub-family: F ⊆ G uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sub-family: F ⊆ G uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  subtype_rel_transitivity all_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality independent_isectElimination hypothesis dependent_functionElimination lambdaEquality axiomEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[F,G,H:P  {}\mrightarrow{}  Type].    (F  \msubseteq{}  H)  supposing  (F  \msubseteq{}  G  and  G  \msubseteq{}  H)



Date html generated: 2016_05_14-AM-06_12_08
Last ObjectModification: 2015_12_26-PM-00_06_18

Theory : co-recursion


Home Index