Nuprl Lemma : sub-family_transitivity
∀[P:Type]. ∀[F,G,H:P ⟶ Type].  (F ⊆ H) supposing (F ⊆ G and G ⊆ H)
Proof
Definitions occuring in Statement : 
sub-family: F ⊆ G
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
sub-family: F ⊆ G
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
subtype_rel_transitivity, 
all_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
lambdaEquality, 
axiomEquality, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[F,G,H:P  {}\mrightarrow{}  Type].    (F  \msubseteq{}  H)  supposing  (F  \msubseteq{}  G  and  G  \msubseteq{}  H)
Date html generated:
2016_05_14-AM-06_12_08
Last ObjectModification:
2015_12_26-PM-00_06_18
Theory : co-recursion
Home
Index