Nuprl Lemma : fun_exp_add1

[f,x:Top]. ∀[n:ℕ].  (f (f^n x) f^n x)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] top: Top apply: a add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fun_exp: f^n nat: top: Top sq_stable: SqStable(P) implies:  Q squash: T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} subtract: m subtype_rel: A ⊆B le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True false: False prop: compose: g all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  primrec-unroll nat_wf top_wf eq_int_wf bool_wf equal-wf-T-base assert_wf sq_stable__le le_antisymmetry_iff condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel bnot_wf not_wf add-subtract-cancel uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality isect_memberEquality voidElimination voidEquality sqequalAxiom because_Cache equalityTransitivity equalitySymmetry baseClosed intEquality independent_functionElimination imageMemberEquality imageElimination productElimination independent_isectElimination applyEquality lambdaEquality minusEquality lambdaFormation unionElimination equalityElimination independent_pairFormation impliesFunctionality dependent_functionElimination

Latex:
\mforall{}[f,x:Top].  \mforall{}[n:\mBbbN{}].    (f  (f\^{}n  x)  \msim{}  f\^{}n  +  1  x)



Date html generated: 2017_04_14-AM-07_34_48
Last ObjectModification: 2017_02_27-PM-03_07_40

Theory : fun_1


Home Index