Nuprl Lemma : fun_exp_wf

[T:Type]. ∀[n:ℕ]. ∀[f:T ⟶ T].  (f^n ∈ T ⟶ T)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fun_exp: f^n nat:
Lemmas referenced :  primrec_wf compose_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality lambdaEquality hypothesis natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  T].    (f\^{}n  \mmember{}  T  {}\mrightarrow{}  T)



Date html generated: 2019_06_20-PM-00_26_38
Last ObjectModification: 2018_09_26-AM-11_48_50

Theory : fun_1


Home Index