Nuprl Lemma : ext-family-iff

[P:Type]. ∀[F,G:P ⟶ Type].  uiff(F ≡ G;F ⊆ G ∧ G ⊆ F)


Proof




Definitions occuring in Statement :  ext-family: F ≡ G sub-family: F ⊆ G uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sub-family: F ⊆ G ext-family: F ≡ G ext-eq: A ≡ B uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf and_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination because_Cache independent_pairEquality lambdaEquality axiomEquality lemma_by_obid isectElimination applyEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[F,G:P  {}\mrightarrow{}  Type].    uiff(F  \mequiv{}  G;F  \msubseteq{}  G  \mwedge{}  G  \msubseteq{}  F)



Date html generated: 2016_05_14-AM-06_12_13
Last ObjectModification: 2015_12_26-PM-00_06_15

Theory : co-recursion


Home Index