Nuprl Lemma : ext-family-iff
∀[P:Type]. ∀[F,G:P ⟶ Type].  uiff(F ≡ G;F ⊆ G ∧ G ⊆ F)
Proof
Definitions occuring in Statement : 
ext-family: F ≡ G
, 
sub-family: F ⊆ G
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
sub-family: F ⊆ G
, 
ext-family: F ≡ G
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
and_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
because_Cache, 
independent_pairEquality, 
lambdaEquality, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[F,G:P  {}\mrightarrow{}  Type].    uiff(F  \mequiv{}  G;F  \msubseteq{}  G  \mwedge{}  G  \msubseteq{}  F)
Date html generated:
2016_05_14-AM-06_12_13
Last ObjectModification:
2015_12_26-PM-00_06_15
Theory : co-recursion
Home
Index