Nuprl Lemma : corec-sub-family

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].  corec-family(H) ⊆ corec-family(H) supposing family-monotone{i:l}(P;H)


Proof




Definitions occuring in Statement :  corec-family: corec-family(H) family-monotone: family-monotone{i:l}(P;H) sub-family: F ⊆ G uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a corec-family: corec-family(H) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] top: Top nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  sub-family: F ⊆ G subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False compose: g le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} family-monotone: family-monotone{i:l}(P;H) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) squash: T subtract: m true: True isect-family: a:A. F[a]
Lemmas referenced :  sub-isect-family corec-family_wf nat_wf fun_exp_wf top_wf fun_exp_unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add subtract_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel family-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality functionExtensionality functionEquality cumulativity universeEquality hypothesis lambdaEquality instantiate independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality setElimination rename natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache dependent_pairFormation promote_hyp dependent_functionElimination independent_functionElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed imageElimination addEquality minusEquality isectEquality axiomEquality

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    H  corec-family(H)  \msubseteq{}  corec-family(H)  supposing  family-monotone\{i:l\}(P;H)



Date html generated: 2017_04_14-AM-07_41_54
Last ObjectModification: 2017_02_27-PM-03_13_42

Theory : co-recursion


Home Index