Nuprl Lemma : sub-isect-family

[P:Type]. ∀[G:P ⟶ Type]. ∀[A:Type]. ∀[F:A ⟶ P ⟶ Type].  G ⊆ ⋂a:A. F[a] supposing ∀a:A. G ⊆ F[a]


Proof




Definitions occuring in Statement :  sub-family: F ⊆ G isect-family: a:A. F[a] uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a isect-family: a:A. F[a] sub-family: F ⊆ G all: x:A. B[x] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf sub-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaFormation lambdaEquality isect_memberEquality hypothesisEquality applyEquality sqequalHypSubstitution hypothesis dependent_functionElimination thin axiomEquality lemma_by_obid isectElimination because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[G:P  {}\mrightarrow{}  Type].  \mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].    G  \msubseteq{}  \mcap{}a:A.  F[a]  supposing  \mforall{}a:A.  G  \msubseteq{}  F[a]



Date html generated: 2016_05_14-AM-06_12_10
Last ObjectModification: 2015_12_26-PM-00_06_14

Theory : co-recursion


Home Index