Nuprl Lemma : sub-isect-family
∀[P:Type]. ∀[G:P ⟶ Type]. ∀[A:Type]. ∀[F:A ⟶ P ⟶ Type].  G ⊆ ⋂a:A. F[a] supposing ∀a:A. G ⊆ F[a]
Proof
Definitions occuring in Statement : 
sub-family: F ⊆ G
, 
isect-family: ⋂a:A. F[a]
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
isect-family: ⋂a:A. F[a]
, 
sub-family: F ⊆ G
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
sub-family_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaFormation, 
lambdaEquality, 
isect_memberEquality, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
thin, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[G:P  {}\mrightarrow{}  Type].  \mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].    G  \msubseteq{}  \mcap{}a:A.  F[a]  supposing  \mforall{}a:A.  G  \msubseteq{}  F[a]
Date html generated:
2016_05_14-AM-06_12_10
Last ObjectModification:
2015_12_26-PM-00_06_14
Theory : co-recursion
Home
Index