Nuprl Lemma : subtype-respects-equality
∀[A,B:Type].  respects-equality(B;A) supposing B ⊆r A
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
equal_functionality_wrt_subtype_rel2, 
istype-base, 
subtype_rel_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
hypothesis, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
Error :equalityIstype, 
Error :universeIsType, 
sqequalBase, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[A,B:Type].    respects-equality(B;A)  supposing  B  \msubseteq{}r  A
Date html generated:
2019_06_20-AM-11_19_33
Last ObjectModification:
2018_11_21-PM-06_22_09
Theory : subtype_0
Home
Index