Nuprl Lemma : subtype-respects-equality

[A,B:Type].  respects-equality(B;A) supposing B ⊆A


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B respects-equality: respects-equality(S;T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a respects-equality: respects-equality(S;T) all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  equal_functionality_wrt_subtype_rel2 istype-base subtype_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  hypothesis thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination sqequalRule Error :equalityIstype,  Error :universeIsType,  sqequalBase Error :inhabitedIsType,  Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality

Latex:
\mforall{}[A,B:Type].    respects-equality(B;A)  supposing  B  \msubseteq{}r  A



Date html generated: 2019_06_20-AM-11_19_33
Last ObjectModification: 2018_11_21-PM-06_22_09

Theory : subtype_0


Home Index