Nuprl Lemma : pcw-pp-barred-W
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[pp:n:ℕ × (ℕn ⟶ cw-step(A;a.B[a]))]. (Barred(pp) ∈ ℙ)
Proof
Definitions occuring in Statement :
cw-step: cw-step(A;a.B[a])
,
pcw-pp-barred: Barred(pp)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
pcw-pp-barred: Barred(pp)
,
prop: ℙ
,
and: P ∧ Q
,
nat: ℕ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
false: False
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
cw-step: cw-step(A;a.B[a])
,
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
,
spreadn: spread3,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
ext-family: F ≡ G
,
ext-eq: A ≡ B
,
pi1: fst(t)
Lemmas referenced :
less_than_wf,
subtract_wf,
decidable__le,
false_wf,
not-le-2,
less-iff-le,
condition-implies-le,
minus-one-mul,
zero-add,
minus-one-mul-top,
minus-add,
minus-minus,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
decidable__lt,
not-lt-2,
add-mul-special,
zero-mul,
le-add-cancel-alt,
lelt_wf,
cw-step_wf,
param-co-W-ext,
unit_wf2,
it_wf,
assert_wf,
isr_wf,
equal_wf,
nat_wf,
int_seg_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
productElimination,
thin,
productEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
natural_numberEquality,
setElimination,
rename,
because_Cache,
hypothesis,
applyEquality,
dependent_set_memberEquality,
independent_pairFormation,
dependent_functionElimination,
hypothesisEquality,
unionElimination,
lambdaFormation,
voidElimination,
independent_functionElimination,
independent_isectElimination,
addEquality,
minusEquality,
cumulativity,
lambdaEquality,
functionExtensionality,
hypothesis_subsumption,
equalityTransitivity,
equalitySymmetry,
axiomEquality,
functionEquality,
isect_memberEquality,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[pp:n:\mBbbN{} \mtimes{} (\mBbbN{}n {}\mrightarrow{} cw-step(A;a.B[a]))]. (Barred(pp) \mmember{} \mBbbP{})
Date html generated:
2017_04_14-AM-07_43_32
Last ObjectModification:
2017_02_27-PM-03_14_12
Theory : co-recursion
Home
Index