Nuprl Lemma : pcw-pp-barred-W-decidable
∀[A:Type]. ∀[B:A ⟶ Type].  ∀n:ℕ. ∀s:ℕn ⟶ cw-step(A;a.B[a]).  (Barred(<n, s>) ∨ (¬Barred(<n, s>)))
Proof
Definitions occuring in Statement : 
cw-step: cw-step(A;a.B[a])
, 
pcw-pp-barred: Barred(pp)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cw-step: cw-step(A;a.B[a])
, 
nat: ℕ
, 
decidable: Dec(P)
Lemmas referenced : 
decidable__pcw-pp-barred, 
unit_wf2, 
it_wf, 
int_seg_wf, 
pcw-step_wf, 
cw-step_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
dependent_pairEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]).    (Barred(<n,  s>)  \mvee{}  (\mneg{}Barred(<n,  s>)))
Date html generated:
2016_05_14-AM-06_15_10
Last ObjectModification:
2015_12_26-PM-00_05_05
Theory : co-recursion
Home
Index