Nuprl Lemma : pcw-pp-barred-W-decidable

[A:Type]. ∀[B:A ⟶ Type].  ∀n:ℕ. ∀s:ℕn ⟶ cw-step(A;a.B[a]).  (Barred(<n, s>) ∨ Barred(<n, s>)))


Proof




Definitions occuring in Statement :  cw-step: cw-step(A;a.B[a]) pcw-pp-barred: Barred(pp) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A or: P ∨ Q function: x:A ⟶ B[x] pair: <a, b> natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cw-step: cw-step(A;a.B[a]) nat: decidable: Dec(P)
Lemmas referenced :  decidable__pcw-pp-barred unit_wf2 it_wf int_seg_wf pcw-step_wf cw-step_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality applyEquality dependent_functionElimination dependent_pairEquality functionEquality natural_numberEquality setElimination rename cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]).    (Barred(<n,  s>)  \mvee{}  (\mneg{}Barred(<n,  s>)))



Date html generated: 2016_05_14-AM-06_15_10
Last ObjectModification: 2015_12_26-PM-00_05_05

Theory : co-recursion


Home Index