Nuprl Lemma : proof-tree_wf
∀[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)].  (proof-tree(Sequent;Rule;effect) ∈ Type)
Proof
Definitions occuring in Statement : 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
W_wf, 
list_wf, 
unit_wf2, 
int_seg_wf, 
length_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
unionEquality, 
hypothesis, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].
    (proof-tree(Sequent;Rule;effect)  \mmember{}  Type)
Date html generated:
2019_10_15-AM-11_06_06
Last ObjectModification:
2018_08_21-PM-01_57_51
Theory : general
Home
Index