Nuprl Lemma : proof-tree_wf

[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)].  (proof-tree(Sequent;Rule;effect) ∈ Type)


Proof




Definitions occuring in Statement :  proof-tree: proof-tree(Sequent;Rule;effect) list: List uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proof-tree: proof-tree(Sequent;Rule;effect) so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  W_wf list_wf unit_wf2 int_seg_wf length_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality lambdaEquality applyEquality unionEquality hypothesis lambdaFormation equalityTransitivity equalitySymmetry unionElimination natural_numberEquality voidEquality dependent_functionElimination independent_functionElimination axiomEquality functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].
    (proof-tree(Sequent;Rule;effect)  \mmember{}  Type)



Date html generated: 2019_10_15-AM-11_06_06
Last ObjectModification: 2018_08_21-PM-01_57_51

Theory : general


Home Index