Nuprl Lemma : mFOL-abstract-functionality
∀[fmla:mFOL()]. ∀[Dom:Type]. ∀[S:FOStruct(Dom)]. ∀[a1,a2:FOAssignment(Dom)].
  Dom,S,a1 |= mFOL-abstract(fmla) = Dom,S,a2 |= mFOL-abstract(fmla) ∈ ℙ 
  supposing ∀z:ℤ. ((z ∈ mFOL-freevars(fmla)) 
⇒ ((a1 z) = (a2 z) ∈ Dom))
Proof
Definitions occuring in Statement : 
mFOL-abstract: mFOL-abstract(fmla)
, 
mFOL-freevars: mFOL-freevars(fmla)
, 
mFOL: mFOL()
, 
FOSatWith: Dom,S,a |= fmla
, 
FOStruct: FOStruct(Dom)
, 
FOAssignment: FOAssignment(Dom)
, 
l_member: (x ∈ l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
mFOL-induction, 
all_wf, 
FOAssignment_wf, 
l_member_wf, 
mFOL-freevars_wf, 
FOSatWith_wf, 
mFOL-abstract_wf, 
mFOL_wf, 
mFOatomic_wf, 
list_wf, 
mFOconnect_wf, 
mFOquant_wf, 
bool_wf, 
FOStruct_wf, 
member-remove-repeats, 
int-deq_wf, 
list_induction, 
map_wf, 
map_nil_lemma, 
nil_wf, 
map_cons_lemma, 
cons_wf, 
squash_wf, 
true_wf, 
cons_member, 
equal_wf, 
iff_weakening_equal, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
and_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
or_wf, 
int-valueall-type, 
val-union-l-union, 
member-union, 
update-assignment_wf, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
member_filter, 
bnot_wf, 
iff_transitivity, 
assert_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
iff_weakening_uiff, 
assert_of_bnot, 
exists_wf
\mforall{}[fmla:mFOL()].  \mforall{}[Dom:Type].  \mforall{}[S:FOStruct(Dom)].  \mforall{}[a1,a2:FOAssignment(Dom)].
    Dom,S,a1  |=  mFOL-abstract(fmla)  =  Dom,S,a2  |=  mFOL-abstract(fmla) 
    supposing  \mforall{}z:\mBbbZ{}.  ((z  \mmember{}  mFOL-freevars(fmla))  {}\mRightarrow{}  ((a1  z)  =  (a2  z)))
Date html generated:
2015_07_17-AM-07_54_27
Last ObjectModification:
2015_02_03-PM-09_38_54
Home
Index