Nuprl Lemma : val-union-l-union

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  val-union(eq;as;bs) as ⋃ bs supposing valueall-type(T)


Proof




Definitions occuring in Statement :  val-union: val-union(eq;as;bs) l-union: as ⋃ bs list: List deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l-union: as ⋃ bs val-union: val-union(eq;as;bs) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall list_wf list-valueall-type evalall-reduce valueall-type_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination callbyvalueReduce because_Cache sqequalAxiom isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].
    val-union(eq;as;bs)  \msim{}  as  \mcup{}  bs  supposing  valueall-type(T)



Date html generated: 2016_05_14-PM-03_25_20
Last ObjectModification: 2015_12_26-PM-06_22_26

Theory : decidable!equality


Home Index