Nuprl Lemma : val-union-l-union
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  val-union(eq;as;bs) ~ as ⋃ bs supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
val-union: val-union(eq;as;bs)
, 
l-union: as ⋃ bs
, 
list: T List
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
l-union: as ⋃ bs
, 
val-union: val-union(eq;as;bs)
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
list_wf, 
list-valueall-type, 
evalall-reduce, 
valueall-type_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
callbyvalueReduce, 
because_Cache, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].
    val-union(eq;as;bs)  \msim{}  as  \mcup{}  bs  supposing  valueall-type(T)
Date html generated:
2016_05_14-PM-03_25_20
Last ObjectModification:
2015_12_26-PM-06_22_26
Theory : decidable!equality
Home
Index