Nuprl Lemma : mFOconnect-knd_wf
∀[v:mFOL()]. mFOconnect-knd(v) ∈ Atom supposing ↑mFOconnect?(v)
Proof
Definitions occuring in Statement : 
mFOconnect-knd: mFOconnect-knd(v)
, 
mFOconnect?: mFOconnect?(v)
, 
mFOL: mFOL()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
atom: Atom
Lemmas : 
mFOL-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
mFOconnect?_wf, 
mFOL_wf
\mforall{}[v:mFOL()].  mFOconnect-knd(v)  \mmember{}  Atom  supposing  \muparrow{}mFOconnect?(v)
Date html generated:
2015_07_17-AM-07_53_41
Last ObjectModification:
2015_01_27-AM-10_06_56
Home
Index