Nuprl Lemma : tuple-type_wf
∀[L:Type List]. (tuple-type(L) ∈ Type)
Proof
Definitions occuring in Statement :
tuple-type: tuple-type(L)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
tuple-type: tuple-type(L)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
Lemmas referenced :
list_ind_wf,
unit_wf2,
ifthenelse_wf,
null_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
universeEquality,
hypothesis,
lambdaEquality,
hypothesisEquality,
productEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[L:Type List]. (tuple-type(L) \mmember{} Type)
Date html generated:
2016_05_14-PM-03_57_20
Last ObjectModification:
2015_12_26-PM-07_22_18
Theory : tuples
Home
Index