Nuprl Lemma : tuple-type_wf
∀[L:Type List]. (tuple-type(L) ∈ Type)
Proof
Definitions occuring in Statement : 
tuple-type: tuple-type(L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
tuple-type: tuple-type(L)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_wf, 
unit_wf2, 
ifthenelse_wf, 
null_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L:Type  List].  (tuple-type(L)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-03_57_20
Last ObjectModification:
2015_12_26-PM-07_22_18
Theory : tuples
Home
Index