Nuprl Lemma : tuple-type_wf

[L:Type List]. (tuple-type(L) ∈ Type)


Proof




Definitions occuring in Statement :  tuple-type: tuple-type(L) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tuple-type: tuple-type(L) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf unit_wf2 ifthenelse_wf null_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality hypothesis lambdaEquality hypothesisEquality productEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:Type  List].  (tuple-type(L)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-03_57_20
Last ObjectModification: 2015_12_26-PM-07_22_18

Theory : tuples


Home Index