Nuprl Lemma : sq_stable__correct_proof

[Sequent,Rule:Type].
  ∀effect:(Sequent × Rule) ⟶ (Sequent List?)
    ∀[s:Sequent]. ∀pf:proof-tree(Sequent;Rule;effect). SqStable(correct_proof(Sequent;effect;s;pf))


Proof




Definitions occuring in Statement :  correct_proof: correct_proof(Sequent;effect;s;pf) proof-tree: proof-tree(Sequent;Rule;effect) list: List sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x] unit: Unit function: x:A ⟶ B[x] product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] sq_stable: SqStable(P) implies:  Q member: t ∈ T proof-tree: proof-tree(Sequent;Rule;effect) so_lambda: λ2x.t[x] prop: so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B pcw-pp-barred: Barred(pp) nat: int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top cw-step: cw-step(A;a.B[a]) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 less_than: a < b less_than': less_than'(a;b) true: True squash: T isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt ext-eq: A ≡ B unit: Unit it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ext-family: F ≡ G pi1: fst(t) nat_plus: + W-rel: W-rel(A;a.B[a];w) param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) pcw-steprel: StepRel(s1;s2) pi2: snd(t) isl: isl(x) pcw-step-agree: StepAgree(s;p1;w) cand: c∧ B guard: {T} Wsup: Wsup(a;b) correct_proof: correct_proof(Sequent;effect;s;pf) sq_type: SQType(T) le: A ≤ B
Lemmas referenced :  W-elimination-facts list_wf unit_wf2 int_seg_wf length_wf equal_wf subtype_rel_self subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt lelt_wf top_wf less_than_wf false_wf true_wf add-subtract-cancel itermAdd_wf int_term_value_add_lemma W-ext param-co-W-ext it_wf param-co-W_wf pcw-steprel_wf subtype_rel_dep_function subtype_rel_wf select_wf int_seg_properties squash_wf all_wf correct_proof_wf proof-tree_wf pi1_wf Wsup_wf subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtype_rel_function int_seg_subtype sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation introduction cut thin sqequalHypSubstitution hypothesisEquality extract_by_obid dependent_functionElimination productEquality sqequalRule lambdaEquality applyEquality unionEquality isectElimination hypothesis equalityTransitivity equalitySymmetry unionElimination natural_numberEquality voidEquality independent_functionElimination productElimination strong_bar_Induction instantiate because_Cache functionExtensionality setElimination rename dependent_set_memberEquality independent_pairFormation independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination lessCases axiomSqEquality imageMemberEquality baseClosed imageElimination axiomEquality addEquality int_eqReduceTrueSq promote_hyp hypothesis_subsumption equalityElimination dependent_pairEquality inlEquality hyp_replacement applyLambdaEquality universeEquality independent_pairEquality cumulativity functionEquality

Latex:
\mforall{}[Sequent,Rule:Type].
    \mforall{}effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)
        \mforall{}[s:Sequent].  \mforall{}pf:proof-tree(Sequent;Rule;effect).  SqStable(correct\_proof(Sequent;effect;s;pf))



Date html generated: 2019_10_15-AM-11_06_35
Last ObjectModification: 2018_08_21-PM-01_59_21

Theory : general


Home Index