Nuprl Lemma : Wsup_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[a:A]. ∀[b:B[a] ⟶ W(A;a.B[a])].  (Wsup(a;b) ∈ W(A;a.B[a]))


Proof




Definitions occuring in Statement :  Wsup: Wsup(a;b) W: W(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Wsup: Wsup(a;b) so_lambda: λ2x.t[x] so_apply: x[s] ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  W-ext W_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache lambdaEquality applyEquality hypothesisEquality productElimination dependent_pairEquality functionEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].  \mforall{}[b:B[a]  {}\mrightarrow{}  W(A;a.B[a])].    (Wsup(a;b)  \mmember{}  W(A;a.B[a]))



Date html generated: 2016_05_14-AM-06_15_28
Last ObjectModification: 2015_12_26-PM-00_04_57

Theory : co-recursion


Home Index