Nuprl Lemma : Wsup_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[a:A]. ∀[b:B[a] ⟶ W(A;a.B[a])].  (Wsup(a;b) ∈ W(A;a.B[a]))
Proof
Definitions occuring in Statement : 
Wsup: Wsup(a;b)
, 
W: W(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Wsup: Wsup(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
W-ext, 
W_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
productElimination, 
dependent_pairEquality, 
functionEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[a:A].  \mforall{}[b:B[a]  {}\mrightarrow{}  W(A;a.B[a])].    (Wsup(a;b)  \mmember{}  W(A;a.B[a]))
Date html generated:
2016_05_14-AM-06_15_28
Last ObjectModification:
2015_12_26-PM-00_04_57
Theory : co-recursion
Home
Index