Nuprl Lemma : assert_of_eq_bool
∀[p,q:𝔹].  uiff(↑p =b q;p = q)
Proof
Definitions occuring in Statement : 
eq_bool: p =b q
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
eq_bool: p =b q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
bor: p ∨bq
, 
band: p ∧b q
, 
bnot: ¬bb
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
bool_wf, 
equal_wf, 
assert_witness, 
eq_bool_wf, 
assert_wf, 
btrue_wf, 
iff_imp_equal_bool, 
bfalse_wf, 
istype-void, 
true_wf, 
istype-assert, 
bor_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
bnot_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_bnot, 
btrue_neq_bfalse
Rules used in proof : 
Error :universeIsType, 
because_Cache, 
Error :inhabitedIsType, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
extract_by_obid, 
hypothesis, 
axiomEquality, 
hypothesisEquality, 
isectElimination, 
isect_memberEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
promote_hyp, 
voidElimination, 
applyEquality, 
baseClosed, 
sqequalBase
Latex:
\mforall{}[p,q:\mBbbB{}].    uiff(\muparrow{}p  =b  q;p  =  q)
Date html generated:
2019_06_20-AM-11_31_32
Last ObjectModification:
2019_01_06-AM-11_55_40
Theory : bool_1
Home
Index