Nuprl Lemma : assert_of_eq_bool

[p,q:𝔹].  uiff(↑=b q;p q)


Proof




Definitions occuring in Statement :  eq_bool: =b q assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  implies:  Q prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] eq_bool: =b q bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff assert: b ifthenelse: if then else fi  iff: ⇐⇒ Q true: True false: False rev_implies:  Q bor: p ∨bq band: p ∧b q bnot: ¬bb all: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} exists: x:A. B[x] not: ¬A subtype_rel: A ⊆B
Lemmas referenced :  bool_wf equal_wf assert_witness eq_bool_wf assert_wf btrue_wf iff_imp_equal_bool bfalse_wf istype-void true_wf istype-assert bor_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf bnot_wf bool_cases_sqequal eqff_to_assert assert_of_bnot btrue_neq_bfalse
Rules used in proof :  Error :universeIsType,  because_Cache Error :inhabitedIsType,  independent_functionElimination equalitySymmetry equalityTransitivity extract_by_obid hypothesis axiomEquality hypothesisEquality isectElimination isect_memberEquality independent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination equalityElimination independent_pairFormation independent_isectElimination Error :lambdaFormation_alt,  natural_numberEquality dependent_functionElimination instantiate cumulativity Error :dependent_pairFormation_alt,  Error :equalityIstype,  promote_hyp voidElimination applyEquality baseClosed sqequalBase

Latex:
\mforall{}[p,q:\mBbbB{}].    uiff(\muparrow{}p  =b  q;p  =  q)



Date html generated: 2019_06_20-AM-11_31_32
Last ObjectModification: 2019_01_06-AM-11_55_40

Theory : bool_1


Home Index