Nuprl Lemma : select-tuple_wf

[L:Type List]. ∀[n:ℕ]. ∀[k:ℤ].  ∀[x:tuple-type(L)]. (x.n ∈ L[n]) supposing n < ||L|| ∧ (k ||L|| ∈ ℤ)


Proof




Definitions occuring in Statement :  select-tuple: x.n tuple-type: tuple-type(L) select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) select-tuple: x.n bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  eq_int: (i =z j) bfalse: ff pi1: fst(t) le: A ≤ B bnot: ¬bb assert: b int_upper: {i...} cand: c∧ B pi2: snd(t)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf tuple-type_wf length_wf equal-wf-base-T less_than_transitivity1 less_than_irreflexivity nat_wf equal-wf-T-base colength_wf_list list_wf list-cases length_of_nil_lemma tupletype_nil_lemma stuck-spread base_wf unit_wf2 equal-wf-base int_subtype_base product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int length_of_cons_lemma tupletype_cons_lemma ifthenelse_wf null_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int null_nil_lemma null_cons_lemma non_neg_length eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf nequal-le-implies zero-add select-cons-tl int_upper_properties decidable__lt add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry productEquality instantiate universeEquality applyEquality because_Cache unionElimination baseClosed productElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality cumulativity imageElimination equalityElimination pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[L:Type  List].  \mforall{}[n:\mBbbN{}].  \mforall{}[k:\mBbbZ{}].    \mforall{}[x:tuple-type(L)].  (x.n  \mmember{}  L[n])  supposing  n  <  ||L||  \mwedge{}  (k  =  ||L||)



Date html generated: 2017_04_17-AM-09_29_35
Last ObjectModification: 2017_02_27-PM-05_30_23

Theory : tuples


Home Index