Nuprl Lemma : mFOL-sequent-evidence_transitivity2
From uniform evidence that hyps 
⇒ y and 
uniform evidence that (y ∧ hyps) 
⇒ x
we construct uniform evidence that hyps 
⇒ x.⋅
∀hyps:mFOL() List. ∀[x,y:mFOL()].  (mFOL-sequent-evidence(<hyps, y>) 
⇒ mFOL-sequent-evidence(<[y / hyps], x>) 
⇒ mFOL-s\000Cequent-evidence(<hyps, x>))
Proof
Definitions occuring in Statement : 
mFOL-sequent-evidence: mFOL-sequent-evidence(s)
, 
mFOL: mFOL()
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pair: <a, b>
Lemmas : 
map_cons_lemma, 
tupletype_cons_lemma, 
mFOL_wf, 
list-cases, 
map_nil_lemma, 
tupletype_nil_lemma, 
null_nil_lemma, 
unit_wf2, 
product_subtype_list, 
null_cons_lemma, 
null_wf3, 
map_wf, 
FOSatWith_wf, 
mFOL-abstract_wf, 
subtype_rel_list, 
top_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
list_wf, 
tuple-type_wf, 
FOAssignment_wf, 
FOStruct_wf, 
mFOL-sequent-evidence_wf, 
cons_wf
\mforall{}hyps:mFOL()  List
    \mforall{}[x,y:mFOL()].    (mFOL-sequent-evidence(<hyps,  y>)  {}\mRightarrow{}  mFOL-sequent-evidence(<[y  /  hyps],  x>)  {}\mRightarrow{}  mFO\000CL-sequent-evidence(<hyps,  x>))
Date html generated:
2015_07_17-AM-07_56_39
Last ObjectModification:
2015_01_27-AM-10_05_26
Home
Index