Step
*
1
7
of Lemma
mFOL-proveable-evidence
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. subproofs : ℕ||subgoals|| ─→ proof-tree(mFOL-sequent();mFOLRule();λsr.mFOLeffect(sr))@i'
5. ∀b:ℕ||subgoals||. ∀s:mFOL-sequent().
(correct_proof(mFOL-sequent();λsr.mFOLeffect(sr);s;subproofs b)
⇒ mFOL-sequent-evidence(s))@i'
6. ∀i:ℕ||subgoals||. correct_proof(mFOL-sequent();λsr.mFOLeffect(sr);subgoals[i];subproofs i)@i'
7. (concl ∈ hyps)
8. [] = subgoals ∈ (mFOL-sequent() List)
⊢ mFOL-sequent-evidence(<hyps, concl>)
BY
{ (ThinVar `subgoals'
THEN ((RepeatFor 2 (D (-1)) THEN (HypSubst' (-1) 0 THENA Auto))
THEN BLemma `mFOL-sequent-evidence-trivial`
THEN Auto)⋅
) }
Latex:
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. subproofs : \mBbbN{}||subgoals|| {}\mrightarrow{} proof-tree(mFOL-sequent();mFOLRule();\mlambda{}sr.mFOLeffect(sr))@i'
5. \mforall{}b:\mBbbN{}||subgoals||. \mforall{}s:mFOL-sequent().
(correct\_proof(mFOL-sequent();\mlambda{}sr.mFOLeffect(sr);s;subproofs b) {}\mRightarrow{} mFOL-sequent-evidence(s))@i'
6. \mforall{}i:\mBbbN{}||subgoals||. correct\_proof(mFOL-sequent();\mlambda{}sr.mFOLeffect(sr);subgoals[i];subproofs i)@i'
7. (concl \mmember{} hyps)
8. [] = subgoals
\mvdash{} mFOL-sequent-evidence(<hyps, concl>)
By
(ThinVar `subgoals'
THEN ((RepeatFor 2 (D (-1)) THEN (HypSubst' (-1) 0 THENA Auto))
THEN BLemma `mFOL-sequent-evidence-trivial`
THEN Auto)\mcdot{}
)
Home
Index