Step
*
1
9
1
of Lemma
mFOL-proveable-evidence
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. hypnum : ℕ@i
5. hypnum < ||hyps||
6. ↑mFOconnect?(hyps[hypnum])
7. mFOconnect-knd(hyps[hypnum]) = "or" ∈ Atom
8. mFOL-sequent-evidence(<[mFOconnect-left(hyps[hypnum]) / hyps], concl>)
9. mFOL-sequent-evidence(<[mFOconnect-right(hyps[hypnum]) / hyps], concl>)
⊢ mFOL-sequent-evidence(<hyps, concl>)
BY
{ (Assert hyps[hypnum] = mFOconnect-left(hyps[hypnum]) ∨ mFOconnect-right(hyps[hypnum]) ∈ mFOL() BY
(RepeatFor 2 (MoveToConcl (-3))
THEN GenConclAtAddr [1;1;1]
THEN All Thin
THEN MoveToConcl (-1)
THEN BLemmaUp `mFOL-induction`
THEN Reduce 0
THEN Auto
THEN Try ((Fold `AbstractFOFormula` 0 THEN Auto))
THEN Unfold `mFOL-sequent` 0
THEN Auto)) }
1
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. hypnum : ℕ@i
5. hypnum < ||hyps||
6. ↑mFOconnect?(hyps[hypnum])
7. mFOconnect-knd(hyps[hypnum]) = "or" ∈ Atom
8. mFOL-sequent-evidence(<[mFOconnect-left(hyps[hypnum]) / hyps], concl>)
9. mFOL-sequent-evidence(<[mFOconnect-right(hyps[hypnum]) / hyps], concl>)
10. hyps[hypnum] = mFOconnect-left(hyps[hypnum]) ∨ mFOconnect-right(hyps[hypnum]) ∈ mFOL()
⊢ mFOL-sequent-evidence(<hyps, concl>)
Latex:
1. hyps : mFOL() List@i
2. concl : mFOL()@i
3. subgoals : mFOL-sequent() List@i
4. hypnum : \mBbbN{}@i
5. hypnum < ||hyps||
6. \muparrow{}mFOconnect?(hyps[hypnum])
7. mFOconnect-knd(hyps[hypnum]) = "or"
8. mFOL-sequent-evidence(<[mFOconnect-left(hyps[hypnum]) / hyps], concl>)
9. mFOL-sequent-evidence(<[mFOconnect-right(hyps[hypnum]) / hyps], concl>)
\mvdash{} mFOL-sequent-evidence(<hyps, concl>)
By
(Assert hyps[hypnum] = mFOconnect-left(hyps[hypnum]) \mvee{} mFOconnect-right(hyps[hypnum]) BY
(RepeatFor 2 (MoveToConcl (-3))
THEN GenConclAtAddr [1;1;1]
THEN All Thin
THEN MoveToConcl (-1)
THEN BLemmaUp `mFOL-induction`
THEN Reduce 0
THEN Auto
THEN Try ((Fold `AbstractFOFormula` 0 THEN Auto))
THEN Unfold `mFOL-sequent` 0
THEN Auto))
Home
Index