Step
*
of Lemma
nullset-union
∀p:FinProbSpace. ∀[S:ℕ ─→ (ℕ ─→ Outcome) ─→ ℙ]. ((∀i:ℕ. nullset(p;S[i]))
⇒ nullset(p;λs.∃i:ℕ. (S[i] s)))
BY
{ (Auto
THEN (All (Unfold `nullset`))
THEN Auto
THEN (Assert ∃F:ℕ ─→ {q:ℚ| 0 < q} ─→ p-open(p)
∀i:ℕ. ∀q:{q:ℚ| 0 < q} . ((∀s:ℕ ─→ Outcome. ((S[i] s)
⇒ s ∈ F i q)) ∧ measure(F i q) ≤ q) BY
((RenameVar `f' (-2))
THEN InstConcl [⌈λi,q. (fst((f i q)))⌉]⋅
THEN Auto
THEN Reduce 0
THEN (GenConcl ⌈(f i q1)
= Z
∈ (∃C:p-open(p). ((∀s:ℕ ─→ Outcome. ((S[i] s)
⇒ s ∈ C)) ∧ measure(C) ≤ q1))⌉⋅
THENA Auto
)
THEN D -2
THEN Reduce 0
THEN Auto))
THEN ExRepD) }
1
1. p : FinProbSpace@i
2. [S] : ℕ ─→ (ℕ ─→ Outcome) ─→ ℙ
3. ∀i:ℕ. ∀q:{q:ℚ| 0 < q} . ∃C:p-open(p). ((∀s:ℕ ─→ Outcome. ((S[i] s)
⇒ s ∈ C)) ∧ measure(C) ≤ q)@i
4. q : {q:ℚ| 0 < q} @i
5. F : ℕ ─→ {q:ℚ| 0 < q} ─→ p-open(p)
6. ∀i:ℕ. ∀q:{q:ℚ| 0 < q} . ((∀s:ℕ ─→ Outcome. ((S[i] s)
⇒ s ∈ F i q)) ∧ measure(F i q) ≤ q)
⊢ ∃C:p-open(p). ((∀s:ℕ ─→ Outcome. (((λs.∃i:ℕ. (S[i] s)) s)
⇒ s ∈ C)) ∧ measure(C) ≤ q)
Latex:
\mforall{}p:FinProbSpace
\mforall{}[S:\mBbbN{} {}\mrightarrow{} (\mBbbN{} {}\mrightarrow{} Outcome) {}\mrightarrow{} \mBbbP{}]. ((\mforall{}i:\mBbbN{}. nullset(p;S[i])) {}\mRightarrow{} nullset(p;\mlambda{}s.\mexists{}i:\mBbbN{}. (S[i] s)))
By
(Auto
THEN (All (Unfold `nullset`))
THEN Auto
THEN (Assert \mexists{}F:\mBbbN{} {}\mrightarrow{} \{q:\mBbbQ{}| 0 < q\} {}\mrightarrow{} p-open(p)
\mforall{}i:\mBbbN{}. \mforall{}q:\{q:\mBbbQ{}| 0 < q\} .
((\mforall{}s:\mBbbN{} {}\mrightarrow{} Outcome. ((S[i] s) {}\mRightarrow{} s \mmember{} F i q)) \mwedge{} measure(F i q) \mleq{} q) BY
((RenameVar `f' (-2))
THEN InstConcl [\mkleeneopen{}\mlambda{}i,q. (fst((f i q)))\mkleeneclose{}]\mcdot{}
THEN Auto
THEN Reduce 0
THEN (GenConcl \mkleeneopen{}(f i q1) = Z\mkleeneclose{}\mcdot{} THENA Auto)
THEN D -2
THEN Reduce 0
THEN Auto))
THEN ExRepD)
Home
Index