Nuprl Lemma : nullset-union

p:FinProbSpace. ∀[S:ℕ ─→ (ℕ ─→ Outcome) ─→ ℙ]. ((∀i:ℕnullset(p;S[i]))  nullset(p;λs.∃i:ℕ(S[i] s)))


Proof




Definitions occuring in Statement :  nullset: nullset(p;S) p-outcome: Outcome finite-prob-space: FinProbSpace nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ─→ B[x]
Lemmas :  countable-p-union_wf nat_wf all_wf p-outcome_wf exists_wf p-open-member_wf p-measure-le_wf Error :qmul-positive,  Error :qexp_wf,  qdiv_wf Error :int_nzero-rational,  not-equal-2 decidable__le le_wf false_wf not-le-2 condition-implies-le add-commutes add-associates minus-add zero-add add-swap or_wf nequal_wf sq_stable__le minus-one-mul add_functionality_wrt_le add-zero le-add-cancel sq_stable_from_decidable Error :qless_wf,  Error :decidable__qless,  Error :qexp-positive-iff,  Error :qinv-positive,  Error :assert-q_less-eq,  iff_weakening_equal int-equal-in-rationals rationals_wf not_wf equal_wf assert_wf isEven_wf equal-wf-T-base qmul_wf member-countable-p-union Error :qless_witness,  expectation_wf p-open_wf int_seg_wf subtype_rel_set lelt_wf int-subtype-rationals length_wf set_wf finite-prob-space_wf eq_int_wf bool_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot expectation-constant top_wf subtype_rel_dep_function expectation-imax-list decidable__lt minus-zero less_than_wf int_seg_subtype-nat Error :qsum-qle,  Error :qle_weakening_lt_qorder,  squash_wf true_wf Error :prod_sum_l_q,  Error :qsum_wf,  qmul_com Error :qexp_step,  Error :q-geometric-series,  qsub_wf assert-qeq equal-wf-base qadd_wf Error :qmul_ac_1_qrng,  Error :qmul_comm_qrng,  Error :qmul-qdiv-cancel3,  Error :qmul_over_plus_qrng,  Error :qmul_over_minus_qrng,  Error :qmul_one_qrng,  Error :qadd_preserves_qless,  Error :qadd_ac_1_q,  Error :qadd_comm_q,  Error :qadd_inv_assoc_q,  Error :qinverse_q,  Error :mon_ident_q,  Error :qless_transitivity_1_qorder,  imax-list_wf map_wf upto_wf map_length_nat length_upto
\mforall{}p:FinProbSpace
    \mforall{}[S:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  Outcome)  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}i:\mBbbN{}.  nullset(p;S[i]))  {}\mRightarrow{}  nullset(p;\mlambda{}s.\mexists{}i:\mBbbN{}.  (S[i]  s)))



Date html generated: 2015_07_17-AM-08_01_16
Last ObjectModification: 2015_02_03-PM-09_50_24

Home Index