Nuprl Lemma : countable-p-union_wf
∀[p:FinProbSpace]. ∀[A:ℕ ─→ p-open(p)].  (countable-p-union(i.A[i]) ∈ p-open(p))
Proof
Definitions occuring in Statement : 
countable-p-union: countable-p-union(i.A[i])
, 
p-open: p-open(p)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
Lemmas : 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
assert_wf, 
equal-wf-T-base, 
bool_wf, 
eq_int_wf, 
p-outcome_wf, 
int_seg_wf, 
nat_wf, 
lelt_wf, 
false_wf, 
minus-zero, 
minus-add, 
add-commutes, 
condition-implies-le, 
le-add-cancel, 
zero-add, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
not-equal-2, 
decidable__lt, 
length_upto, 
iff_weakening_equal, 
map_length_nat, 
true_wf, 
squash_wf, 
less_than_wf, 
upto_wf, 
subtype_rel_self, 
subtype_rel_dep_function, 
le_wf, 
all_wf, 
int_seg_subtype-nat, 
map_wf, 
imax-list_wf, 
imax-list-ub, 
l_member_wf, 
l_exists_iff, 
member_upto, 
subtype_rel_list, 
member_map, 
le-add-cancel2, 
imax-list-lb, 
less-iff-le, 
sq_stable__le, 
add-swap, 
not-le-2, 
decidable__le, 
l_all_iff, 
length_wf, 
less_than_transitivity2, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
le_weakening, 
le_weakening2, 
member_upto2, 
set_subtype_base, 
equal_wf, 
set_wf
\mforall{}[p:FinProbSpace].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  p-open(p)].    (countable-p-union(i.A[i])  \mmember{}  p-open(p))
Date html generated:
2015_07_17-AM-08_00_43
Last ObjectModification:
2015_07_16-AM-09_51_59
Home
Index