Nuprl Lemma : countable-p-union_wf

[p:FinProbSpace]. ∀[A:ℕ ─→ p-open(p)].  (countable-p-union(i.A[i]) ∈ p-open(p))


Proof




Definitions occuring in Statement :  countable-p-union: countable-p-union(i.A[i]) p-open: p-open(p) finite-prob-space: FinProbSpace nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x]
Lemmas :  assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity not_wf bnot_wf assert_wf equal-wf-T-base bool_wf eq_int_wf p-outcome_wf int_seg_wf nat_wf lelt_wf false_wf minus-zero minus-add add-commutes condition-implies-le le-add-cancel zero-add add-zero add-associates add_functionality_wrt_le not-equal-2 decidable__lt length_upto iff_weakening_equal map_length_nat true_wf squash_wf less_than_wf upto_wf subtype_rel_self subtype_rel_dep_function le_wf all_wf int_seg_subtype-nat map_wf imax-list_wf imax-list-ub l_member_wf l_exists_iff member_upto subtype_rel_list member_map le-add-cancel2 imax-list-lb less-iff-le sq_stable__le add-swap not-le-2 decidable__le l_all_iff length_wf less_than_transitivity2 decidable__equal_int int_subtype_base subtype_base_sq le_weakening le_weakening2 member_upto2 set_subtype_base equal_wf set_wf
\mforall{}[p:FinProbSpace].  \mforall{}[A:\mBbbN{}  {}\mrightarrow{}  p-open(p)].    (countable-p-union(i.A[i])  \mmember{}  p-open(p))



Date html generated: 2015_07_17-AM-08_00_43
Last ObjectModification: 2015_07_16-AM-09_51_59

Home Index