Nuprl Lemma : member_upto
∀n,i:ℕ. ((i ∈ upto(n))
⇐⇒ i < n)
Proof
Definitions occuring in Statement :
upto: upto(n)
,
l_member: (x ∈ l)
,
nat: ℕ
,
less_than: a < b
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
l_member: (x ∈ l)
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
guard: {T}
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
uimplies: b supposing a
,
prop: ℙ
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
subtype_rel: A ⊆r B
,
less_than': less_than'(a;b)
,
rev_implies: P
⇐ Q
Lemmas referenced :
length_upto,
select_upto,
nat_properties,
decidable__lt,
select_wf,
int_seg_wf,
upto_wf,
le_wf,
int_seg_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformless_wf,
itermVar_wf,
intformnot_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
lelt_wf,
l_member_wf,
nat_wf,
subtype_rel_list,
int_seg_subtype_nat,
false_wf,
decidable__equal_int,
decidable__le,
intformle_wf,
itermConstant_wf,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
less_than_wf,
length_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
independent_pairFormation,
cut,
sqequalHypSubstitution,
productElimination,
thin,
sqequalRule,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
dependent_set_memberEquality,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
dependent_functionElimination,
unionElimination,
because_Cache,
independent_isectElimination,
natural_numberEquality,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
applyEquality,
productEquality
Latex:
\mforall{}n,i:\mBbbN{}. ((i \mmember{} upto(n)) \mLeftarrow{}{}\mRightarrow{} i < n)
Date html generated:
2017_04_17-AM-07_57_58
Last ObjectModification:
2017_02_27-PM-04_29_40
Theory : list_1
Home
Index