Nuprl Lemma : member_upto
∀n,i:ℕ.  ((i ∈ upto(n)) ⇐⇒ i < n)
Proof
Definitions occuring in Statement : 
upto: upto(n), 
l_member: (x ∈ l), 
nat: ℕ, 
less_than: a < b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
prop: ℙ, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
rev_implies: P ⇐ Q
Lemmas referenced : 
length_upto, 
select_upto, 
nat_properties, 
decidable__lt, 
select_wf, 
int_seg_wf, 
upto_wf, 
le_wf, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lelt_wf, 
l_member_wf, 
nat_wf, 
subtype_rel_list, 
int_seg_subtype_nat, 
false_wf, 
decidable__equal_int, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
less_than_wf, 
length_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
productEquality
Latex:
\mforall{}n,i:\mBbbN{}.    ((i  \mmember{}  upto(n))  \mLeftarrow{}{}\mRightarrow{}  i  <  n)
Date html generated:
2017_04_17-AM-07_57_58
Last ObjectModification:
2017_02_27-PM-04_29_40
Theory : list_1
Home
Index