Nuprl Lemma : imax-list-lb
∀[L:ℤ List]. ∀[a:ℤ].  uiff(imax-list(L) ≤ a;(∀b∈L.b ≤ a)) supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
imax-list: imax-list(L)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
assoc: Assoc(T;op)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
guard: {T}
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
imax-list: imax-list(L)
, 
uiff: uiff(P;Q)
, 
l_all: (∀x∈L.P[x])
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
imax_assoc, 
istype-int, 
combine-list-rel-and, 
imax_wf, 
le_wf, 
iff_weakening_uiff, 
imax_lb, 
le_witness_for_triv, 
imax-list_wf, 
l_all_wf, 
l_member_wf, 
less_than_wf, 
length_wf, 
list_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
axiomEquality, 
intEquality, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
because_Cache, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
productElimination, 
Error :universeIsType, 
productEquality, 
Error :productIsType, 
promote_hyp, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
setElimination, 
rename, 
Error :setIsType, 
independent_pairEquality, 
natural_numberEquality
Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}[a:\mBbbZ{}].    uiff(imax-list(L)  \mleq{}  a;(\mforall{}b\mmember{}L.b  \mleq{}  a))  supposing  0  <  ||L||
Date html generated:
2019_06_20-PM-01_19_38
Last ObjectModification:
2018_10_07-AM-00_02_43
Theory : list_1
Home
Index