Nuprl Lemma : member-countable-p-union
∀p:FinProbSpace. ∀A:ℕ ─→ p-open(p). ∀s:ℕ ─→ Outcome.  ((∃i:ℕ. s ∈ A[i]) 
⇒ s ∈ countable-p-union(i.A[i]))
Proof
Definitions occuring in Statement : 
countable-p-union: countable-p-union(i.A[i])
, 
p-open-member: s ∈ C
, 
p-open: p-open(p)
, 
p-outcome: Outcome
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
Lemmas : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
decidable__le, 
false_wf, 
not-le-2, 
sq_stable__le, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
decidable__lt, 
add-mul-special, 
zero-mul, 
equal-wf-T-base, 
countable-p-union_wf, 
nat_wf, 
p-open_wf, 
subtype_rel_dep_function, 
p-outcome_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
subtype_rel_self, 
eq_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
imax-list-ub, 
map_wf, 
upto_wf, 
squash_wf, 
true_wf, 
map_length_nat, 
iff_weakening_equal, 
length_upto, 
less_than_transitivity2, 
l_exists_iff, 
l_member_wf, 
lelt_wf, 
member_map, 
equal-wf-base-T, 
member_upto2, 
imax-list-lb, 
l_all_iff, 
le-add-cancel2, 
exists_wf, 
all_wf, 
imax-list_wf
\mforall{}p:FinProbSpace.  \mforall{}A:\mBbbN{}  {}\mrightarrow{}  p-open(p).  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.
    ((\mexists{}i:\mBbbN{}.  s  \mmember{}  A[i])  {}\mRightarrow{}  s  \mmember{}  countable-p-union(i.A[i]))
Date html generated:
2015_07_17-AM-08_00_48
Last ObjectModification:
2015_02_03-PM-09_45_28
Home
Index