Nuprl Lemma : member-countable-p-union

p:FinProbSpace. ∀A:ℕ ─→ p-open(p). ∀s:ℕ ─→ Outcome.  ((∃i:ℕs ∈ A[i])  s ∈ countable-p-union(i.A[i]))


Proof




Definitions occuring in Statement :  countable-p-union: countable-p-union(i.A[i]) p-open-member: s ∈ C p-open: p-open(p) p-outcome: Outcome finite-prob-space: FinProbSpace nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ─→ B[x]
Lemmas :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int decidable__le false_wf not-le-2 sq_stable__le less-iff-le condition-implies-le minus-add minus-one-mul zero-add add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf decidable__lt add-mul-special zero-mul equal-wf-T-base countable-p-union_wf nat_wf p-open_wf subtype_rel_dep_function p-outcome_wf int_seg_wf int_seg_subtype-nat subtype_rel_self eq_int_wf assert_wf bnot_wf not_wf uiff_transitivity assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot imax-list-ub map_wf upto_wf squash_wf true_wf map_length_nat iff_weakening_equal length_upto less_than_transitivity2 l_exists_iff l_member_wf lelt_wf member_map equal-wf-base-T member_upto2 imax-list-lb l_all_iff le-add-cancel2 exists_wf all_wf imax-list_wf
\mforall{}p:FinProbSpace.  \mforall{}A:\mBbbN{}  {}\mrightarrow{}  p-open(p).  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.
    ((\mexists{}i:\mBbbN{}.  s  \mmember{}  A[i])  {}\mRightarrow{}  s  \mmember{}  countable-p-union(i.A[i]))



Date html generated: 2015_07_17-AM-08_00_48
Last ObjectModification: 2015_02_03-PM-09_45_28

Home Index