Nuprl Lemma : qadd_wf
∀[r,s:ℚ].  (r + s ∈ ℚ)
Proof
Definitions occuring in Statement : 
qadd: r + s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rationals: ℚ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
qadd: r + s
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
btrue: tt
, 
qeq: qeq(r;s)
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
rationals_wf, 
quotient-member-eq, 
b-union_wf, 
int_nzero_wf, 
equal-wf-T-base, 
bool_wf, 
qeq_wf, 
qeq-equiv, 
valueall-type-has-valueall, 
bunion-valueall-type, 
int-valueall-type, 
product-valueall-type, 
istype-int, 
set-valueall-type, 
nequal_wf, 
evalall-reduce, 
isint-int, 
eqtt_to_assert, 
eq_int_wf, 
assert_of_eq_int, 
subtype_base_sq, 
int_subtype_base, 
mul-distributes-right, 
mul-commutes, 
add-commutes, 
btrue_wf, 
subtype_rel_b-union-left, 
subtype_rel_b-union-right, 
trivial-equal, 
bfalse_wf, 
int_entire_a, 
int_nzero_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
ifthenelse_wf, 
mul-swap, 
mul-associates, 
mul_preserves_eq, 
decidable__equal_int, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
thin, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
isectElimination, 
intEquality, 
productEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
baseClosed, 
independent_isectElimination, 
dependent_functionElimination, 
imageElimination, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
because_Cache, 
natural_numberEquality, 
callbyvalueReduce, 
isintReduceTrue, 
addEquality, 
independent_pairEquality, 
multiplyEquality, 
setElimination, 
Error :memTop, 
instantiate, 
cumulativity, 
equalityIstype, 
productIsType, 
sqequalBase, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
applyEquality, 
imageMemberEquality, 
dependent_pairEquality_alt, 
dependent_set_memberEquality_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
voidElimination, 
universeEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].    (r  +  s  \mmember{}  \mBbbQ{})
Date html generated:
2020_05_20-AM-09_12_51
Last ObjectModification:
2019_12_31-PM-08_19_57
Theory : rationals
Home
Index