Nuprl Lemma : mul_preserves_eq
∀[a,b,n:ℤ].  (n * a) = (n * b) ∈ ℤ supposing a = b ∈ ℤ
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
multiplyEquality, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,n:\mBbbZ{}].    (n  *  a)  =  (n  *  b)  supposing  a  =  b
Date html generated:
2016_05_13-PM-03_34_34
Last ObjectModification:
2015_12_26-AM-09_43_32
Theory : arithmetic
Home
Index