Nuprl Lemma : mul_preserves_eq

[a,b,n:ℤ].  (n a) (n b) ∈ ℤ supposing b ∈ ℤ


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut multiplyEquality hypothesisEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,n:\mBbbZ{}].    (n  *  a)  =  (n  *  b)  supposing  a  =  b



Date html generated: 2016_05_13-PM-03_34_34
Last ObjectModification: 2015_12_26-AM-09_43_32

Theory : arithmetic


Home Index