Nuprl Lemma : rationals_wf
ℚ ∈ Type
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
quotient_wf, 
b-union_wf, 
int_nzero_wf, 
equal_wf, 
bool_wf, 
qeq_wf, 
btrue_wf, 
qeq-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
productEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination
Latex:
\mBbbQ{}  \mmember{}  Type
Date html generated:
2016_05_15-PM-10_36_51
Last ObjectModification:
2015_12_27-PM-08_01_09
Theory : rationals
Home
Index