Nuprl Lemma : rationals_wf

ℚ ∈ Type


Proof




Definitions occuring in Statement :  rationals: member: t ∈ T universe: Type
Definitions unfolded in proof :  rationals: uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf b-union_wf int_nzero_wf equal_wf bool_wf qeq_wf btrue_wf qeq-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality productEquality hypothesis sqequalRule lambdaEquality hypothesisEquality independent_isectElimination

Latex:
\mBbbQ{}  \mmember{}  Type



Date html generated: 2016_05_15-PM-10_36_51
Last ObjectModification: 2015_12_27-PM-08_01_09

Theory : rationals


Home Index