Nuprl Lemma : int_entire_a
∀[a,b:ℤ].  (a * b ≠ 0) supposing (b ≠ 0 and a ≠ 0)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
decidable__int_equal, 
int_entire, 
subtract_wf, 
minus-zero, 
zero-add, 
add-zero, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
natural_numberEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
unionElimination, 
independent_isectElimination, 
addEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  *  b  \mneq{}  0)  supposing  (b  \mneq{}  0  and  a  \mneq{}  0)
Date html generated:
2017_04_14-AM-07_20_33
Last ObjectModification:
2017_02_27-PM-02_53_46
Theory : arithmetic
Home
Index