Nuprl Lemma : qsub_wf
∀[r,s:ℚ].  (r - s ∈ ℚ)
Proof
Definitions occuring in Statement : 
qsub: r - s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
qsub: r - s
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
qadd_wf, 
qmul_wf, 
int-subtype-rationals, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r,s:\mBbbQ{}].    (r  -  s  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-10_39_27
Last ObjectModification:
2015_12_27-PM-07_59_16
Theory : rationals
Home
Index