Nuprl Lemma : qsub_wf

[r,s:ℚ].  (r s ∈ ℚ)


Proof




Definitions occuring in Statement :  qsub: s rationals: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  qsub: s uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  qadd_wf qmul_wf int-subtype-rationals rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality minusEquality natural_numberEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[r,s:\mBbbQ{}].    (r  -  s  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-10_39_27
Last ObjectModification: 2015_12_27-PM-07_59_16

Theory : rationals


Home Index