Nuprl Lemma : p-measure-le_wf
∀[p:FinProbSpace]. ∀[q:ℚ]. ∀[C:p-open(p)].  (measure(C) ≤ q ∈ ℙ)
Proof
Definitions occuring in Statement : 
p-measure-le: measure(C) ≤ q
, 
p-open: p-open(p)
, 
finite-prob-space: FinProbSpace
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
rationals: ℚ
Lemmas : 
all_wf, 
nat_wf, 
Error :qless_wf, 
expectation_wf, 
int_seg_wf, 
p-outcome_wf, 
subtype_rel_set, 
rationals_wf, 
lelt_wf, 
int-subtype-rationals, 
length_wf, 
p-open_wf, 
finite-prob-space_wf
\mforall{}[p:FinProbSpace].  \mforall{}[q:\mBbbQ{}].  \mforall{}[C:p-open(p)].    (measure(C)  \mleq{}  q  \mmember{}  \mBbbP{})
Date html generated:
2015_07_17-AM-08_00_00
Last ObjectModification:
2015_01_27-AM-11_22_03
Home
Index