Nuprl Lemma : p-measure-le_wf
∀[p:FinProbSpace]. ∀[q:ℚ]. ∀[C:p-open(p)]. (measure(C) ≤ q ∈ ℙ)
Proof
Definitions occuring in Statement :
p-measure-le: measure(C) ≤ q
,
p-open: p-open(p)
,
finite-prob-space: FinProbSpace
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
rationals: ℚ
Lemmas :
all_wf,
nat_wf,
Error :qless_wf,
expectation_wf,
int_seg_wf,
p-outcome_wf,
subtype_rel_set,
rationals_wf,
lelt_wf,
int-subtype-rationals,
length_wf,
p-open_wf,
finite-prob-space_wf
\mforall{}[p:FinProbSpace]. \mforall{}[q:\mBbbQ{}]. \mforall{}[C:p-open(p)]. (measure(C) \mleq{} q \mmember{} \mBbbP{})
Date html generated:
2015_07_17-AM-08_00_00
Last ObjectModification:
2015_01_27-AM-11_22_03
Home
Index