Nuprl Lemma : expectation-constant

[p:FinProbSpace]. ∀[a:ℚ]. ∀[n:ℕ]. ∀[X:RandomVariable(p;n)].  E(n;X) a ∈ ℚ supposing ∀s:ℕn ─→ Outcome. ((X s) a ∈ ℚ)


Proof




Definitions occuring in Statement :  expectation: E(n;F) random-variable: RandomVariable(p;n) p-outcome: Outcome finite-prob-space: FinProbSpace int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ─→ B[x] natural_number: $n equal: t ∈ T rationals:
Lemmas :  all_wf int_seg_wf p-outcome_wf equal_wf rationals_wf random-variable_wf nat_wf finite-prob-space_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel null-seq_wf iff_weakening_equal length_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot ws-constant expectation_wf not-le-2 rv-shift_wf cons-seq_wf trivial-int-eq1 subtype_rel_self
\mforall{}[p:FinProbSpace].  \mforall{}[a:\mBbbQ{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[X:RandomVariable(p;n)].
    E(n;X)  =  a  supposing  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  Outcome.  ((X  s)  =  a)



Date html generated: 2015_07_17-AM-07_58_55
Last ObjectModification: 2015_02_03-PM-09_44_27

Home Index