Nuprl Lemma : cons-seq_wf
∀[T:Type]. ∀[k:ℕ]. ∀[x:T]. ∀[s:ℕk ─→ T]. (cons-seq(x;s) ∈ ℕk + 1 ─→ T)
Proof
Definitions occuring in Statement :
cons-seq: cons-seq(x;s)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
add: n + m
,
natural_number: $n
,
universe: Type
Lemmas :
eq_int_wf,
bool_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
subtract_wf,
decidable__le,
false_wf,
not-le-2,
not-equal-2,
sq_stable__le,
add_functionality_wrt_le,
add-associates,
add-zero,
zero-add,
le-add-cancel,
condition-implies-le,
add-commutes,
minus-add,
minus-zero,
minus-one-mul,
minus-minus,
add-swap,
decidable__lt,
less-iff-le,
lelt_wf,
int_seg_wf,
nat_wf
\mforall{}[T:Type]. \mforall{}[k:\mBbbN{}]. \mforall{}[x:T]. \mforall{}[s:\mBbbN{}k {}\mrightarrow{} T]. (cons-seq(x;s) \mmember{} \mBbbN{}k + 1 {}\mrightarrow{} T)
Date html generated:
2015_07_17-AM-07_58_34
Last ObjectModification:
2015_01_27-AM-11_24_04
Home
Index