Nuprl Lemma : cons-seq_wf

[T:Type]. ∀[k:ℕ]. ∀[x:T]. ∀[s:ℕk ─→ T].  (cons-seq(x;s) ∈ ℕ1 ─→ T)


Proof




Definitions occuring in Statement :  cons-seq: cons-seq(x;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] add: m natural_number: $n universe: Type
Lemmas :  eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtract_wf decidable__le false_wf not-le-2 not-equal-2 sq_stable__le add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero minus-one-mul minus-minus add-swap decidable__lt less-iff-le lelt_wf int_seg_wf nat_wf
\mforall{}[T:Type].  \mforall{}[k:\mBbbN{}].  \mforall{}[x:T].  \mforall{}[s:\mBbbN{}k  {}\mrightarrow{}  T].    (cons-seq(x;s)  \mmember{}  \mBbbN{}k  +  1  {}\mrightarrow{}  T)



Date html generated: 2015_07_17-AM-07_58_34
Last ObjectModification: 2015_01_27-AM-11_24_04

Home Index