Nuprl Lemma : ws-constant

[a:ℚ]. ∀[p:FinProbSpace]. ∀[F:Outcome ─→ ℚ].  weighted-sum(p;F) a ∈ ℚ supposing ∀x:Outcome. ((F x) a ∈ ℚ)


Proof




Definitions occuring in Statement :  weighted-sum: weighted-sum(p;F) p-outcome: Outcome finite-prob-space: FinProbSpace uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ─→ B[x] equal: t ∈ T rationals:
Lemmas :  all_wf int_seg_wf length_wf rationals_wf equal_wf set_wf list_wf equal-wf-T-base Error :qsum_wf,  select_wf sq_stable__le l_all_wf2 l_member_wf Error :qle_wf,  int-subtype-rationals squash_wf true_wf qmul_wf iff_weakening_equal Error :prod_sum_l_q,  non_neg_length length_wf_nat Error :qmul_one_qrng
\mforall{}[a:\mBbbQ{}].  \mforall{}[p:FinProbSpace].  \mforall{}[F:Outcome  {}\mrightarrow{}  \mBbbQ{}].
    weighted-sum(p;F)  =  a  supposing  \mforall{}x:Outcome.  ((F  x)  =  a)



Date html generated: 2015_07_17-AM-07_58_28
Last ObjectModification: 2015_02_03-PM-09_44_12

Home Index