Nuprl Lemma : ws-constant
∀[a:ℚ]. ∀[p:FinProbSpace]. ∀[F:Outcome ─→ ℚ].  weighted-sum(p;F) = a ∈ ℚ supposing ∀x:Outcome. ((F x) = a ∈ ℚ)
Proof
Definitions occuring in Statement : 
weighted-sum: weighted-sum(p;F)
, 
p-outcome: Outcome
, 
finite-prob-space: FinProbSpace
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
equal: s = t ∈ T
, 
rationals: ℚ
Lemmas : 
all_wf, 
int_seg_wf, 
length_wf, 
rationals_wf, 
equal_wf, 
set_wf, 
list_wf, 
equal-wf-T-base, 
Error :qsum_wf, 
select_wf, 
sq_stable__le, 
l_all_wf2, 
l_member_wf, 
Error :qle_wf, 
int-subtype-rationals, 
squash_wf, 
true_wf, 
qmul_wf, 
iff_weakening_equal, 
Error :prod_sum_l_q, 
non_neg_length, 
length_wf_nat, 
Error :qmul_one_qrng
\mforall{}[a:\mBbbQ{}].  \mforall{}[p:FinProbSpace].  \mforall{}[F:Outcome  {}\mrightarrow{}  \mBbbQ{}].
    weighted-sum(p;F)  =  a  supposing  \mforall{}x:Outcome.  ((F  x)  =  a)
Date html generated:
2015_07_17-AM-07_58_28
Last ObjectModification:
2015_02_03-PM-09_44_12
Home
Index