Nuprl Lemma : assert-qeq
∀[r,s:ℚ].  uiff(↑qeq(r;s);r = s ∈ ℚ)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
qeq: qeq(r;s)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
rationals: ℚ
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assert_wf, 
qeq_wf2, 
assert_witness, 
rationals_wf, 
eqtt_to_assert, 
quotient-member-eq, 
equal-wf-T-base, 
qeq-equiv, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bool_wf, 
subtype_rel_self, 
iff_weakening_equal, 
b-union_wf, 
int_nzero_wf, 
qeq_wf, 
equal-wf-base, 
qeq_refl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
equalityIsType1, 
inhabitedIsType, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productIsType, 
equalityIsType4, 
intEquality, 
productEquality, 
equalityIsType3, 
applyLambdaEquality, 
hyp_replacement, 
lambdaEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].    uiff(\muparrow{}qeq(r;s);r  =  s)
Date html generated:
2019_10_16-AM-11_47_40
Last ObjectModification:
2018_10_10-PM-01_24_41
Theory : rationals
Home
Index