Nuprl Lemma : assert-qeq

[r,s:ℚ].  uiff(↑qeq(r;s);r s ∈ ℚ)


Proof




Definitions occuring in Statement :  rationals: qeq: qeq(r;s) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: implies:  Q rationals: quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] squash: T subtype_rel: A ⊆B guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert_wf qeq_wf2 assert_witness rationals_wf eqtt_to_assert quotient-member-eq equal-wf-T-base qeq-equiv equal_wf squash_wf true_wf istype-universe bool_wf subtype_rel_self iff_weakening_equal b-union_wf int_nzero_wf qeq_wf equal-wf-base qeq_refl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination equalityIsType1 inhabitedIsType sqequalRule productElimination independent_pairEquality isect_memberEquality_alt axiomEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination pointwiseFunctionalityForEquality pertypeElimination lambdaEquality_alt dependent_functionElimination applyEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed instantiate productIsType equalityIsType4 intEquality productEquality equalityIsType3 applyLambdaEquality hyp_replacement lambdaEquality

Latex:
\mforall{}[r,s:\mBbbQ{}].    uiff(\muparrow{}qeq(r;s);r  =  s)



Date html generated: 2019_10_16-AM-11_47_40
Last ObjectModification: 2018_10_10-PM-01_24_41

Theory : rationals


Home Index