Nuprl Lemma : qeq_refl

[r:ℤ ⋃ (ℤ × ℤ-o)]. qeq(r;r) tt


Proof




Definitions occuring in Statement :  qeq: qeq(r;s) int_nzero: -o b-union: A ⋃ B btrue: tt bool: 𝔹 uall: [x:A]. B[x] product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] qeq: qeq(r;s) member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] int_nzero: -o callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) btrue: tt bfalse: ff
Lemmas referenced :  valueall-type-has-valueall b-union_wf int_nzero_wf bunion-valueall-type int-valueall-type product-valueall-type set-valueall-type nequal_wf evalall-reduce equal_wf squash_wf true_wf bool_wf eq_int_eq_true btrue_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality productEquality hypothesis independent_isectElimination because_Cache lambdaEquality independent_functionElimination lambdaFormation hypothesisEquality natural_numberEquality callbyvalueReduce applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination multiplyEquality setElimination rename unionElimination equalityElimination isintReduceTrue

Latex:
\mforall{}[r:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].  qeq(r;r)  =  tt



Date html generated: 2018_05_21-PM-11_43_38
Last ObjectModification: 2017_07_26-PM-06_42_55

Theory : rationals


Home Index