Nuprl Lemma : int-equal-in-rationals
∀[x,y:ℤ].  uiff(x = y ∈ ℚ;x = y ∈ ℤ)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
rationals: ℚ
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
assert_of_eq_int, 
eqtt_to_assert, 
evalall-reduce, 
int-valueall-type, 
valueall-type-has-valueall, 
qeq_wf, 
bool_wf, 
equal-wf-T-base, 
int_subtype_base, 
int_nzero_wf, 
b-union_wf, 
equal-wf-base, 
equal_functionality_wrt_subtype_rel2, 
int-subtype-rationals, 
rationals_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
pertypeElimination, 
productEquality, 
baseClosed, 
callbyvalueReduce, 
isintReduceTrue
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  =  y;x  =  y)
Date html generated:
2016_05_15-PM-10_37_07
Last ObjectModification:
2016_01_16-PM-09_37_29
Theory : rationals
Home
Index