Nuprl Lemma : int-equal-in-rationals

[x,y:ℤ].  uiff(x y ∈ ℚ;x y ∈ ℤ)


Proof




Definitions occuring in Statement :  rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B guard: {T} implies:  Q rationals: quotient: x,y:A//B[x; y] cand: c∧ B qeq: qeq(r;s) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  assert_of_eq_int eqtt_to_assert evalall-reduce int-valueall-type valueall-type-has-valueall qeq_wf bool_wf equal-wf-T-base int_subtype_base int_nzero_wf b-union_wf equal-wf-base equal_functionality_wrt_subtype_rel2 int-subtype-rationals rationals_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule because_Cache intEquality independent_isectElimination independent_functionElimination productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry pertypeElimination productEquality baseClosed callbyvalueReduce isintReduceTrue

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  =  y;x  =  y)



Date html generated: 2016_05_15-PM-10_37_07
Last ObjectModification: 2016_01_16-PM-09_37_29

Theory : rationals


Home Index