Step * of Lemma slln-lemma1

p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]). ∀s,k:ℚ.
  ((∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n]))
      (∃B:ℚ((0 ≤ B) ∧ (∀n:ℕ(E(f[n];(x.(x x) x) rv-partial-sum(n;i.X[i])) ≤ (B n)))))) supposing 
     ((∀n:ℕ
         ((E(f[n];X[n]) 0 ∈ ℚ)
         ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ)
         ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))
BY
(Auto THEN Assert ⌈0 ≤ s⌉⋅}

1
.....assertion..... 
1. FinProbSpace@i
2. : ℕ ─→ ℕ@i
3. n:ℕ ─→ RandomVariable(p;f[n])@i
4. : ℚ@i
5. : ℚ@i
6. ∀n:ℕ. ∀i:ℕn.  f[i] < f[n]
7. ∀n:ℕ((E(f[n];X[n]) 0 ∈ ℚ) ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ) ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n])@i
⊢ 0 ≤ s

2
1. FinProbSpace@i
2. : ℕ ─→ ℕ@i
3. n:ℕ ─→ RandomVariable(p;f[n])@i
4. : ℚ@i
5. : ℚ@i
6. ∀n:ℕ. ∀i:ℕn.  f[i] < f[n]
7. ∀n:ℕ((E(f[n];X[n]) 0 ∈ ℚ) ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ) ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n])@i
9. 0 ≤ s
⊢ ∃B:ℚ((0 ≤ B) ∧ (∀n:ℕ(E(f[n];(x.(x x) x) rv-partial-sum(n;i.X[i])) ≤ (B n))))


Latex:


\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}s,k:\mBbbQ{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n]))
          {}\mRightarrow{}  (\mexists{}B:\mBbbQ{}
                    ((0  \mleq{}  B)
                    \mwedge{}  (\mforall{}n:\mBbbN{}
                              (E(f[n];(x.(x  *  x)  *  x  *  x)  o  rv-partial-sum(n;i.X[i]))  \mleq{}  (B  *  n  *  n))))))  supposing 
          ((\mforall{}n:\mBbbN{}
                  ((E(f[n];X[n])  =  0)
                  \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
                  \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k)))  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))


By

(Auto  THEN  Assert  \mkleeneopen{}0  \mleq{}  s\mkleeneclose{}\mcdot{})




Home Index