Step
*
of Lemma
slln-lemma1
∀p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]). ∀s,k:ℚ.
  ((∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n]))
     
⇒ (∃B:ℚ. ((0 ≤ B) ∧ (∀n:ℕ. (E(f[n];(x.(x * x) * x * x) o rv-partial-sum(n;i.X[i])) ≤ (B * n * n)))))) supposing 
     ((∀n:ℕ
         ((E(f[n];X[n]) = 0 ∈ ℚ)
         ∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ)
         ∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))
BY
{ (Auto THEN Assert ⌈0 ≤ s⌉⋅) }
1
.....assertion..... 
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. s : ℚ@i
5. k : ℚ@i
6. ∀n:ℕ. ∀i:ℕn.  f[i] < f[n]
7. ∀n:ℕ. ((E(f[n];X[n]) = 0 ∈ ℚ) ∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ) ∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n])@i
⊢ 0 ≤ s
2
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. s : ℚ@i
5. k : ℚ@i
6. ∀n:ℕ. ∀i:ℕn.  f[i] < f[n]
7. ∀n:ℕ. ((E(f[n];X[n]) = 0 ∈ ℚ) ∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ) ∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n])@i
9. 0 ≤ s
⊢ ∃B:ℚ. ((0 ≤ B) ∧ (∀n:ℕ. (E(f[n];(x.(x * x) * x * x) o rv-partial-sum(n;i.X[i])) ≤ (B * n * n))))
Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}s,k:\mBbbQ{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n]))
          {}\mRightarrow{}  (\mexists{}B:\mBbbQ{}
                    ((0  \mleq{}  B)
                    \mwedge{}  (\mforall{}n:\mBbbN{}
                              (E(f[n];(x.(x  *  x)  *  x  *  x)  o  rv-partial-sum(n;i.X[i]))  \mleq{}  (B  *  n  *  n))))))  supposing 
          ((\mforall{}n:\mBbbN{}
                  ((E(f[n];X[n])  =  0)
                  \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
                  \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k)))  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))
By
(Auto  THEN  Assert  \mkleeneopen{}0  \mleq{}  s\mkleeneclose{}\mcdot{})
Home
Index