Nuprl Lemma : slln-lemma1

p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]). ∀s,k:ℚ.
  ((∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n]))
      (∃B:ℚ((0 ≤ B) ∧ (∀n:ℕ(E(f[n];(x.(x x) x) rv-partial-sum(n;i.X[i])) ≤ (B n)))))) supposing 
     ((∀n:ℕ
         ((E(f[n];X[n]) 0 ∈ ℚ)
         ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ)
         ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))


Proof




Definitions occuring in Statement :  rv-partial-sum: rv-partial-sum(n;i.X[i]) rv-compose: (x.F[x]) X rv-disjoint: rv-disjoint(p;n;X;Y) expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ─→ B[x] natural_number: $n equal: t ∈ T qmul: s rationals:
Lemmas :  int-subtype-rationals Error :qle_wf,  qmul_wf rv-compose_wf rv-const_wf expectation-monotone iff_weakening_equal le_wf false_wf expectation-rv-const rationals_wf p-outcome_wf nat_wf int_seg_wf random-variable_wf Error :q-square-non-neg,  Error :decidable__qle,  Error :qle_weakening_eq_qorder,  Error :qle_complement_qorder,  Error :qle_weakening_lt_qorder,  Error :qle_reflexivity,  primrec-wf2 less_than_wf set_wf Error :mon_ident_q,  Error :qmul_zero_qrng,  Error :qmul_over_plus_qrng,  true_wf squash_wf qadd_wf expectation_wf Error :qsum_wf,  equal_wf subtype_rel-int_seg less_than_irreflexivity less_than_transitivity1 int_seg_subtype-nat Error :sum_unroll_base_q,  length_wf top_wf subtype_rel_dep_function expectation-constant subtract-is-less lelt_wf le-add-cancel2 decidable__lt le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le subtract_wf le_weakening2 Error :sum_unroll_hi_q,  subtype_rel-random-variable rv-add_wf Error :qle_witness,  rv-partial-sum_wf finite-prob-space_wf qmul_ident Error :q_distrib,  Error :qadd_comm_q,  Error :qadd_ac_1_q,  Error :mon_assoc_q,  Error :qmul_ac_1_qrng,  Error :qmul_comm_qrng,  Error :qmul_assoc_qrng,  expectation-rv-add rv-scale_wf rv-mul_wf expectation-rv-disjoint rv-disjoint-compose rv-disjoint_wf rv-disjoint-rv-partial-sum length_wf_nat rv-disjoint-monotone-in-first equal-wf-T-base expectation-rv-scale expectation-monotone-in-first rv-disjoint-symmetry expectation-qsum Error :qsum-const,  Error :qadd_functionality_wrt_qle,  Error :qle_functionality_wrt_implies,  Error :qmul_functionality_wrt_qle,  Error :qle-int,  Error :non-neg-qmul,  expectation-non-neg Error :qsub-sub,  qmul_assoc Error :qinv_inv_q,  Error :qmul_one_qrng,  Error :qmul_over_minus_qrng,  Error :qinverse_q,  Error :qadd_inv_assoc_q,  Error :qadd_preserves_qle,  Error :qle_transitivity_qorder,  qsub_wf rv-disjoint-rv-scale member_wf subtype_rel_set all_wf Error :qmul_preserves_qle2
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}s,k:\mBbbQ{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n]))
          {}\mRightarrow{}  (\mexists{}B:\mBbbQ{}
                    ((0  \mleq{}  B)
                    \mwedge{}  (\mforall{}n:\mBbbN{}
                              (E(f[n];(x.(x  *  x)  *  x  *  x)  o  rv-partial-sum(n;i.X[i]))  \mleq{}  (B  *  n  *  n))))))  supposing 
          ((\mforall{}n:\mBbbN{}
                  ((E(f[n];X[n])  =  0)
                  \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
                  \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k)))  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))



Date html generated: 2015_07_17-AM-08_03_25
Last ObjectModification: 2015_07_17-AM-06_48_39

Home Index