Nuprl Lemma : expectation-rv-disjoint

[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].
  E(n;X Y) (E(n;X) E(n;Y)) ∈ ℚ supposing rv-disjoint(p;n;X;Y)


Proof




Definitions occuring in Statement :  rv-disjoint: rv-disjoint(p;n;X;Y) expectation: E(n;F) rv-mul: Y random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T qmul: s rationals:
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf rv-disjoint_wf random-variable_wf false_wf le_wf decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_weakening2 nat_wf finite-prob-space_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot qmul_wf null-seq_wf int_seg_wf length_wf rationals_wf rv-disjoint-rv-shift equal_wf weighted-sum_wf2 expectation_wf not-le-2 rv-shift_wf rv-mul_wf p-outcome_wf ws-constant natural_number_wf_p-outcome squash_wf true_wf rv-disjoint-shift cons-seq_wf subtype_rel_dep_function subtype_base_sq int-subtype-rationals Error :qadd_comm_q,  Error :mon_ident_q,  iff_weakening_equal ws-linear qadd_wf Error :qmul_zero_qrng,  qmul_com Error :qmul_comm_qrng
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].
    E(n;X  *  Y)  =  (E(n;X)  *  E(n;Y))  supposing  rv-disjoint(p;n;X;Y)



Date html generated: 2015_07_17-AM-07_59_36
Last ObjectModification: 2015_02_03-PM-09_45_35

Home Index