Nuprl Lemma : expectation-rv-disjoint
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].
  E(n;X * Y) = (E(n;X) * E(n;Y)) ∈ ℚ supposing rv-disjoint(p;n;X;Y)
Proof
Definitions occuring in Statement : 
rv-disjoint: rv-disjoint(p;n;X;Y)
, 
expectation: E(n;F)
, 
rv-mul: X * Y
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
qmul: r * s
, 
rationals: ℚ
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
rv-disjoint_wf, 
random-variable_wf, 
false_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_weakening2, 
nat_wf, 
finite-prob-space_wf, 
eq_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
qmul_wf, 
null-seq_wf, 
int_seg_wf, 
length_wf, 
rationals_wf, 
rv-disjoint-rv-shift, 
equal_wf, 
weighted-sum_wf2, 
expectation_wf, 
not-le-2, 
rv-shift_wf, 
rv-mul_wf, 
p-outcome_wf, 
ws-constant, 
natural_number_wf_p-outcome, 
squash_wf, 
true_wf, 
rv-disjoint-shift, 
cons-seq_wf, 
subtype_rel_dep_function, 
subtype_base_sq, 
int-subtype-rationals, 
Error :qadd_comm_q, 
Error :mon_ident_q, 
iff_weakening_equal, 
ws-linear, 
qadd_wf, 
Error :qmul_zero_qrng, 
qmul_com, 
Error :qmul_comm_qrng
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].
    E(n;X  *  Y)  =  (E(n;X)  *  E(n;Y))  supposing  rv-disjoint(p;n;X;Y)
Date html generated:
2015_07_17-AM-07_59_36
Last ObjectModification:
2015_02_03-PM-09_45_35
Home
Index