Nuprl Lemma : rv-disjoint-rv-shift

p:FinProbSpace. ∀n:ℕ. ∀X,Y:RandomVariable(p;n).
  (rv-disjoint(p;n;X;Y)
   (∀x,y:Outcome.  (rv-shift(x;X) rv-shift(y;X) ∈ RandomVariable(p;n 1)))
     ∨ (∀x,y:Outcome.  (rv-shift(x;Y) rv-shift(y;Y) ∈ RandomVariable(p;n 1))) 
     supposing 0 < n)


Proof




Definitions occuring in Statement :  rv-disjoint: rv-disjoint(p;n;X;Y) rv-shift: rv-shift(x;X) random-variable: RandomVariable(p;n) p-outcome: Outcome finite-prob-space: FinProbSpace nat: less_than: a < b uimplies: supposing a all: x:A. B[x] implies:  Q or: P ∨ Q subtract: m natural_number: $n equal: t ∈ T
Lemmas :  member-less_than false_wf lelt_wf cons-seq_wf trivial-int-eq1 subtype_rel_self int_seg_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtract_wf decidable__le not-le-2 not-equal-2 sq_stable__le add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero minus-one-mul minus-minus add-swap decidable__lt less-iff-le le-add-cancel-alt not_wf equal-wf-T-base all_wf p-outcome_wf random-variable_wf le_wf rv-shift_wf less_than_wf rv-disjoint_wf nat_wf
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X,Y:RandomVariable(p;n).
    (rv-disjoint(p;n;X;Y)
    {}\mRightarrow{}  (\mforall{}x,y:Outcome.    (rv-shift(x;X)  =  rv-shift(y;X)))
          \mvee{}  (\mforall{}x,y:Outcome.    (rv-shift(x;Y)  =  rv-shift(y;Y))) 
          supposing  0  <  n)



Date html generated: 2015_07_17-AM-07_59_06
Last ObjectModification: 2015_01_27-AM-11_23_15

Home Index