Nuprl Lemma : expectation-monotone

[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].  E(n;X) ≤ E(n;Y) supposing X ≤ Y


Proof




Definitions occuring in Statement :  rv-le: X ≤ Y expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: uimplies: supposing a uall: [x:A]. B[x]
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf Error :qle_witness,  expectation_wf rv-le_wf random-variable_wf le_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf finite-prob-space_wf null-seq_wf p-outcome_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf weighted-sum_wf2 rv-shift_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot ws-monotone not-le-2 int_seg_wf length_wf rationals_wf sq_stable_from_decidable Error :qle_wf,  int-subtype-rationals Error :decidable__qle,  l_all_iff l_member_wf cons-seq_wf trivial-int-eq1 subtype_rel_self
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].    E(n;X)  \mleq{}  E(n;Y)  supposing  X  \mleq{}  Y



Date html generated: 2015_07_17-AM-07_59_46
Last ObjectModification: 2015_01_27-AM-11_22_43

Home Index