Nuprl Lemma : subtype_rel-random-variable

[k:FinProbSpace]. ∀[n,m:ℕ].  RandomVariable(k;n) ⊆RandomVariable(k;m) supposing n ≤ m


Proof




Definitions occuring in Statement :  random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B
Lemmas :  subtype_rel_dep_function int_seg_wf rationals_wf length_wf subtype_rel-int_seg false_wf subtype_rel_self le_wf nat_wf finite-prob-space_wf
\mforall{}[k:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    RandomVariable(k;n)  \msubseteq{}r  RandomVariable(k;m)  supposing  n  \mleq{}  m



Date html generated: 2015_07_17-AM-07_58_36
Last ObjectModification: 2015_01_27-AM-11_23_18

Home Index