Nuprl Lemma : expectation-non-neg

[p:FinProbSpace]. ∀[n:ℕ]. ∀[Y:RandomVariable(p;n)].  0 ≤ E(n;Y) supposing 0 ≤ Y


Proof




Definitions occuring in Statement :  rv-le: X ≤ Y expectation: E(n;F) rv-const: a random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Lemmas :  expectation-monotone rv-const_wf int-subtype-rationals Error :qle_wf,  squash_wf true_wf rationals_wf expectation-rv-const expectation_wf iff_weakening_equal Error :qle_witness,  rv-le_wf random-variable_wf nat_wf finite-prob-space_wf
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[Y:RandomVariable(p;n)].    0  \mleq{}  E(n;Y)  supposing  0  \mleq{}  Y



Date html generated: 2015_07_17-AM-07_59_52
Last ObjectModification: 2015_02_03-PM-09_44_41

Home Index