Nuprl Lemma : expectation-non-neg
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[Y:RandomVariable(p;n)].  0 ≤ E(n;Y) supposing 0 ≤ Y
Proof
Definitions occuring in Statement : 
rv-le: X ≤ Y, 
expectation: E(n;F), 
rv-const: a, 
random-variable: RandomVariable(p;n), 
finite-prob-space: FinProbSpace, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Lemmas : 
expectation-monotone, 
rv-const_wf, 
int-subtype-rationals, 
Error :qle_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
expectation-rv-const, 
expectation_wf, 
iff_weakening_equal, 
Error :qle_witness, 
rv-le_wf, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[Y:RandomVariable(p;n)].    0  \mleq{}  E(n;Y)  supposing  0  \mleq{}  Y
Date html generated:
2015_07_17-AM-07_59_52
Last ObjectModification:
2015_02_03-PM-09_44_41
Home
Index