Nuprl Lemma : rv-disjoint-monotone-in-first
∀p:FinProbSpace. ∀n:ℕ. ∀X,Y:RandomVariable(p;n).  (rv-disjoint(p;n;X;Y) 
⇒ (∀m:ℕ. rv-disjoint(p;m;X;Y) supposing n ≤ m))
Proof
Definitions occuring in Statement : 
rv-disjoint: rv-disjoint(p;n;X;Y)
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas : 
less_than_wf, 
decidable__lt, 
int_seg_wf, 
le_wf, 
nat_wf, 
rv-disjoint_wf, 
random-variable_wf, 
finite-prob-space_wf, 
equal-wf-T-base, 
all_wf, 
equal_wf, 
not_wf, 
iff_weakening_equal, 
less_than_transitivity1, 
int-subtype-rationals, 
subtype_rel_self, 
false_wf, 
subtype_rel-int_seg, 
l_member_wf, 
Error :qle_wf, 
l_all_wf2, 
sq_stable__le, 
select_wf, 
length_wf, 
Error :qsum_wf, 
rationals_wf, 
p-outcome_wf, 
subtype_rel_dep_function, 
lelt_wf, 
or_wf, 
le-add-cancel2, 
add_functionality_wrt_le, 
less-iff-le, 
zero-add, 
add-commutes, 
add-swap, 
minus-one-mul, 
minus-add, 
add-associates, 
condition-implies-le, 
not-le-2, 
decidable__le, 
not-equal-2
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X,Y:RandomVariable(p;n).
    (rv-disjoint(p;n;X;Y)  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  rv-disjoint(p;m;X;Y)  supposing  n  \mleq{}  m))
Date html generated:
2015_07_17-AM-07_59_16
Last ObjectModification:
2015_07_16-AM-09_52_15
Home
Index