Nuprl Lemma : expectation-qsum

[k:ℕ]. ∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[X:ℕk ─→ RandomVariable(p;n)].
  (E(n;λs.Σ0 ≤ i < k. s) = Σ0 ≤ i < k. E(n;X i) ∈ ℚ)


Proof




Definitions occuring in Statement :  expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ─→ B[x] natural_number: $n equal: t ∈ T rationals:
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf random-variable_wf nat_wf finite-prob-space_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel lt_int_wf bool_wf equal-wf-base assert_wf le_int_wf le_wf bnot_wf expectation-constant int-subtype-rationals top_wf subtype_rel_dep_function length_wf rationals_wf p-outcome_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int int_subtype_base expectation-rv-add Error :qsum_wf,  decidable__lt le-add-cancel2 lelt_wf not-le-2 subtract-is-less qadd_wf expectation_wf iff_weakening_equal squash_wf true_wf subtype_rel-int_seg add-mul-special zero-mul subtype_rel_self
\mforall{}[k:\mBbbN{}].  \mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X:\mBbbN{}k  {}\mrightarrow{}  RandomVariable(p;n)].
    (E(n;\mlambda{}s.\mSigma{}0  \mleq{}  i  <  k.  X  i  s)  =  \mSigma{}0  \mleq{}  i  <  k.  E(n;X  i))



Date html generated: 2015_07_17-AM-07_59_00
Last ObjectModification: 2015_02_03-PM-09_44_38

Home Index